7. I. M. Lifshits ax)d G. D. Parkhomovskii, "The theory of the propagation of ultrasonic waves in poly-
crystals,” Zh. Eksp. Teor. Fiz., 20, No. 2 (1950).
8. A. A. Usov, A. G. Fokin, and T. D. Shermergor, *The theory of the propagation of ultrasonic waves in
polycrystals,™ Zh. Prikl, Mekh, Tekh. Fiz., No. 2 (1972).
9. A. A. Usov, A. G. Fokin, and T. D. Shermergor, "Scattering and digpersion of the velomty of ultrasonic
waves in polyerystals of orthorhombic symmetry,” Zh, Prikl. Mekh. Tekh. Fiz., No. 3 (1976).
10. L. A. Chernov, Propagation of Waves in a Medium with Random Inhomogeneities [in Russian], Izd. Akad.
Nauk SSSR, Moscow (1958).
11, C. L. Pekeris, "Note on the scattering of radiation in an inhomogeneous medium," Phys. Rev., 71, No.
4 (1947).
12. V.I. Perel'man, Brief Chemist's Handbook [in Russian], Khimiya, Moscow—Leningrad (1964).
13. E. A. Babichev and V. M. Korobenin, "Study of the coefficients of thermal expansion of composite
materials," Elektron, Tekh. Mater., 14, No. 3 (1970).
14. G. Huntington, "Elastic constants of crystals. II,® Usp. Fiz. Nauk, 74, No. 3 (1961).

VIBRATIONS OF AN ELASTIC INHOMOGENEOUS
SOLID WEAKENED BY A CIRCULAR SLIT

G. P. Kovalenko UDC 534.539.3

The vibrations of an elastic homogeneous solid, weakened by a circular slit, were discussed in [1].
A solution of the corresponding static problem was set forth in [2, 3]. For a medium whose Lamé parameters
and density depend on the coordinate z, the analogous problem is complicated considerably and admits of an
effective analytical solution only for certain cases of the dependence of the above functions on z and of fixed
values of the Poisson coefficient.

The present article discusses the static and dynamic problems of determining the displacement in an
inhomogeneous elastic solid weakened by a circular slit.

§1. We consider a solid elastic medium, occupying the whole space. The Lamé parameters A and i
and the density of the medium p depend on z:
B = polalz] + 157, p = pylalz] + 1)7, (1.1)
where v is the Poigsson coefficient, assumed constant. As is shown in [4], the equations of motion of such a
medium in the case of axial symmetry, in a cylindrical system of coordinates, can be written in the form

—2 1—4v iR
e

—2 1—4y 0
V‘l‘ 214Vatf~01

Vi — =0,

(1.2)

where V2=02/9r%+ 9/rdr+ 82/022%; v, and v, are the velocities of the deformation waves for z=0, € =alz] + 1.
The functions & and  are connected with the vector displacement u=uy+ wy=urlr+ uzly by the dependences

0,207 = pd, 7™ =y X (i0p/or), (1.3)
where iq, is a unit vector.

In the plane z=0 there is a circular opening of radius r=1 with its center at the origin of coordinates.
It is required to solve the system of equations (1.2) under the assumption that the displacements and stresses
in the vicinity of the slit are the same as in a semiinfinite body z =0, where, at the free surface z=0, the
following boundary conditions obtain:

0, = —pPs; — Py exp (-—i(ﬂt), 0< r<< 1,
T, =0 0Lr<<oo, u, =0, r>1, (1.4)

Sumy. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 152-161, May-
June, 1978. Original article submitted April 7, 1977.
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where ¢ ,, and T, are components of the tensor of the stresses; uy is the axial displacement; pg is the static
pressure, excluding the possibility of closing of the slit.

We solve Egs. (1.2) under the condition that v =1/4. Since the stresses are even with respect to z, the
problem is considered for the half-space z=0. The solution of Egs. (1.2), bounded for z= 0, is sought in the
form

O = \,. 4 () Ty (or) ae™ ¥ da,

. (1.5)
¢ = \n Ay (@) Ty (ar) ae™™ da,

0

where 8§ = 1/&® — i%3; w = V&% K = 0?v}; @ is the separation parameter of Egs. (1.2); Jylar) is a Bessel
function. We select the signs of the radicals in accordance with the conditions

= (@ — K3)%, a> ki3,
n = (a‘.‘. — h2)1/2 o> l\,

— i3 — @) P, 0< a < KVE n = —ii — ad, (1.6)
O La<k
Using dependences (1.3), we express the stress and the displacement in terms of the functions & and g :
3ad
o=ullv 2 -E)o s Rl -%)v)
7 N A2 d
Tpy = u%[(% - aa“)fD + (v2 ~257 f—a—)\t]
u, = g1 (6(1) , R\P) w. == g1 ((D_dz) 1.7
a 3
R=— (%—-;)-
Using (1.4) and the second relationship of (1.7), we find
A)(a) = —(o? - 0¥ 5 an){26 - a) LA, {=). (1.8)

We take the first boundary condition in the form
0, = — pee ¢,

since the static stress can be taken into consideration independently of the solution of the dynamic problem.
Using the other boundary conditions (1.4) and (1.8), we obtain

p [ 1aRa(@) 4, (@) 1, ()] (28 = )1 dm == — p. r < 1,
0

oo

o8l = a(at —n8)] 4, (2) J, (ar) (26 = @) 1doe = 0, r > 1,

I
where Ra(a) is the Rayleigh function of a medium with the properties (1.1):

Rafa) == (202 — 1%)* — 4a?8n — (38 + n) — 3228y — a),
Denoting

D(O() [6k2 - a (%—;iﬂ J o d, (’1)

_ 3Ra () 1.9
H(a) = bo [BRT —a(a? — 8] & )

we arrive at the pairwise integral equations

‘ D(a) Jo(arydoe = 0. r > 1,
]

« (1.10)
Voll - H(@)] D) J, () da = — 320 r <1,
0 0
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Equations (1.10) are a special case of the more general system
{av(t = H ()] Doy I, (ar) da = 1(). r < d,
0
{ D(ay I (ar) doe = 0, 7 > d.
0

In our case, y=1, n=0, d=1, f{r) =—3py/41t o. In accordance with [5], we seek the solution in the form

2 (et
D(a) =(f-’0t)1 : F'l( %‘) ARIS3) J v (@B dg, (1.11)
0 - )

where 6(¢) satisfies a Fredholm equation of the second kind;:

d
0(2) + 2 | M(z, ©) 0(8) dt = Flx); (1.12)
0
Lm
Mz, &) = (z,8)? (ol (@)] (@) T (a8 da, (1.13)
o ﬁT;T v ZTE
and T'(y) is a gamma function.
If 0< y< 2, then
—— 1_ V+L d, + —i-}-l
Fay=z 2 Z e Ter—py e (1.14)
[1]
Taking account of the values of v, %, and d, from (1.11)-(1.14) we find
1
Dia) = 2 | 6(9)sin (a) d, Fla) = — 302%, (1.15)
b Ho
1 =
M(z, &) = n(28)? { aH(a) ] (a2) I (2) do. (1.16)
0 ¥ 7
To go over to the static problem, we find the limit of H(a, w) when w tends to zero:
. _ 3(20.--3a)2
lim {91_5'.01, (l)) = m —1.
Then the kernel (1.16) can be represented in the form
T 0270, o .
M(z, &) = b‘ %2‘3—1:2%‘3 sin (« &) sin(ax) do = Z% [81 In gii +
- 61 (sin, sif,; + cosB, ¢if; — sind, si@, — cosh, ¢i6,)],
8= 2a(t —2).8,= Fa(t+ 2. 1.1m

Thus, the static problem is reduced to the solution of the integral equation (1.12) with the kernel (1.17),
in which sif and cif are the integral sine and cosine. As can be seen from (1.17), at the diagonal £ =x, the
kernel has a logarithmic singularity. All the Fredholm theorems [6] are applicable to equations with such
kernels. Since the logarithmic singularity has an order < 1/2, the kernel (1.17) satisfies the condition

1
(1M, 5Ppa< 4, (1.18)
0

where A is some finite constant. Since the integration integral is finite, then from (1.18) there follows the
satisfaction of the second equation:

-

[M(z, §) |2 dzdt = B < A. (1.19)

Oyt

(=1

It can be shown that the parameter of Eq. (1.12) with the kernel (1.17) X =61a/487 is not an eigenvalue
of the equation. Then, on the basis of the Fredholm alternative, it has a gingular solution. Since the right-
hand side of Eq. (1.2) is a bounded function, the solution of the equation has the same property.
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For an approximate search for the solution, we use the method of successive approximations:

o £ 1

0(z) = B,(7) + D 170, () = F (2) = S %" | Ko (2, B F(8) 4, (1.20)
11—1 n=1{ [} )
where Ky(x, £) is an iterated kernel of the n~th order.
As is well known [6], if the kernel of Eq. (1.12) satisfies the conditions (1.18), (1.19) and
7<B-, (1.21)

then the series (1.20) converges absolutely and uniformly. It can be shown that, for weakly inhomogeneous
media, the condition (1.21) is satisfied. The zero approximation of the solution (1.20) corresponds to the case
of a homogeneous medium (@ =0):

Oy = — o P (1.22)

LT

Carrying out the necessary computations, we find the following term of the solution (1.20):

0y(2) = E'Z? {84(xln x— x) =- (-1—1 [{cosqy siq, — cosq, sig, + sing, cig, —

3Po
4itg

—sing, ci(pl)zia — (sing, siq; — sing; siq, — COS@, iy - Ing, -+ cos¢; Cip; — Infy) 2 H

$1=(r = 1)%11, G =(z— 1)§-a- 1.23)

Acting analogously, we can also find the other terms. They are all bounded in the interval (0, 1) and, in the
case of a homogeneous medium (a@ =0), revert to zero.

§2. Let us calculate the axial and radial displacements in the half~space z=0. Using relationships
(1.5), (1.M-(1.9), and (1.15), we obtain

T [8 (22— k2 = o) e 7% — 0228 - a) e 7] D() T, (o) dut 2.1)

U= 5 O0k® — a(u?-—nb)

Letting w approach zero, and using the L'Hospital's rule, we arrive at an expression for the static axial
displacement:

~ ;
3(P 'f'Po) Cnrrs 20t as% -
Uz 2110'! 6(. 5\ o (E S 1C) ( -3 m e =@ Jo(ar) det.

Taking as 6 = (3py/41¢)9! the sum of the two terms (1.22) and (1.23), we obtain a first approximation for the
axial displacement in an inhomogeneous medium:

3(po - Py 2z 3 e
qu‘__(Egmo_)‘(‘.[Eﬂi_—-——a fei(c a)sm(ag)dﬁ}[ »-3:3 —gm—"__?f.é-a-)]e O‘Jo(ocr)t'ioc. (2.2)

In the case of a homogeneous medium, 6*(¢, @) =a =0, and expression (2.2) coincides with the result
obtained in [2]. Using (1.7) and the other necessary dependences, we find the radial displacement,

T 0] B an)e 8 L (28 + )]
u, = J i o Ji(ar) da. (2.3)
The corresponding static displacement is brought into the form
3(ps+ po) T | si 2y 1 — 720 —382) ] —2a’
Uy = L;HTO—“)O\ [s—‘g—ﬁ— sz \ 8} (£, a) sin («) dt]l e }e “J, (ar) dat. (2.4)

In the case of a homogeneous medium, (2.4) also coincides with the result obtained by Sneddon [2]. Formulas
(2.2) and (2.4) make it possible to calculate the first correction to the true solution for a homogeneous medium,
due to the inhomogeneities of the latter.

For an approximate solution of the dynamic problem, it is useful to represent the kernel (1.16) in ancther
form. The corresponding procedure of the calculations is set forth in [1]; therefore, we give here only the
final result. Integrating in the complex plane, and selecting the signs of the radicals & and 7, in accordance
with (1.6) we obtain
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g‘ .
Mz, 8 =k | ®q(z. B)e™ sin (50 dt,

where

O, = 8;[(2L2 —1)2 - 422 8,y - B2 (E2 + 8ymy) m {2.5)
8% + B2 (L2 -+ Oymy)2
[483 + B s, + p]e2
(8, -+ BL2)2 - B2 32 ’
ay=0, ay="5b,=1/13, b2=1,
= alk, 8§ = ]/1/3 — = 1=z, §; = V=173, B = alk.

Postulating that 0=<a < k< 1, we expand the kernel (2.5) in a Laurent series and a Maclaurin series in
terms of the parameters k and a:

@, =

(2.6)

m4-1 ;m=—1 an-—-n

i
M(z, &)= 212 T M@ B B @.7
2 Yar aom
Eppn= ¥ '{ (Zoe) ema
o (n-—-nz)!l!‘ 5 (";ﬂn-—m /g0 o GG (2.8)
I = 5[+ 8" — (Je —&))"].

The possibility of expanding the funcﬁons (2.6) in terms of the parameter 8 comes from the following
considerations. For the parameter B we shall allow not only real, buf also complex values (a medium
with the absorption of energy). Then, with a fixed value of £, the functions &y can be regarded as analytical
functions of the variable 3, each of which has two poles. A zero value of the parameter 8 is a regular point.
Therefore, in a small circle with its center at the point 8=0, both functions are represented by a Taylor
series. Since the coefficients of this series are integrable functions of the variable £, after their integration
we obtain a converging series with the coefficients (2.8). Out of this there follows also the convergence of a
series in powers of the real parameter 3.

In accordance with the expansion (2.7}, we seek the solution of Eq. (1.12) in the form

e(:") st S m,n—m (l)]mﬁn " Buu ('1') T l‘elﬂ(r) o 5901 ('2’) -+ k2 0’0 (‘T) (2'9)

=0 m=0

Substituting (2.7) and (2.9) into (1.12) and equating terms with identical powers of the parameters, we obtain

n—m m—l Mg 1

1 ) — 1 — & b b4 » 0
Omrs, wom = — 3 E (,,,_(,).’(,,L,’,‘, 2 tem;) My—q (2, §) dE. (2.10)
¥=0

For 64y, we obtain directly a value equal to 3pox/4u0. In constructing formula (2. 10) it was taken into consid~
eration that, as follows from (1.12), all 89y and 0y, (v=1, 2, 3, ...) are equal to zero. We write in explicit
form several terms of the sought solution:

oc

3 :L‘ 1 P . E?
e(-lf) ::4_!_;';1)0{ .Z'—e—-< ; n'” '——-*3;]6%2"—'”;1 g+

) n=q
i ‘ E2
3 z {. m , . ‘m %% Edy \
"}" K si_{- (AEE)O b:l ) i < B ()J‘[ )0..[ ( 30 lf_ 67t ):l na
1; \
+p [ (3B — Laefu) 2 2
1'

( u)( o 1;10L1,) T
+ k%[ 2 (48— izti) + (4B + %&)] _A-spl[ (11541

— 2 (Buuy + o))+ e (4B -+ g (B Bay + Bug Ew)) | 4+,

In the case of a homogeneous medium (3 =0}, the solution obtained coincides with the solution of [1].

The axial and radial displacements in the half-space are determined by formulas (2.1) and (2.3). We find
the axial displacement in the plane of the slit z=0. Substituting z=0 into (2.1), and replacing D{a) by its value
from (1.16), we obtain
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{1 1
3 T e 5y sintaty dE\ T (o dy . 3 [ G dt
Uz = — 5 0\ E}B (g)sm(ai)dg}.fﬂ(ﬂ)da = 320 7\ @y
If we write
0" (b dg  miars
[ — (=2 — i1,

then the axial displacement agsumes the form
By = 3(1 — r)L¥2apg)tp, + poexp (—iot) 17, — if).
Separating out the real part, we obtain

Rewu,o = 3(1 — r)V3(2au0)~1p, -~ peQ cos (ot — wp)], (2.11)
where
T3 o = ayete Jo
Q== V]'-I S f33 0y == arctg T (2.12)
— 4
fi—i"é—,‘l‘z El" E’n”"za't[ ?:1 20-—6%[-,50

n=0
E2 E2 3 At
‘ 10 . o a5 op . kB o .
-+ 4r? (1— - 61130) —1i 4(-3;‘ + 2530)] o [—— 57 Eio B + 08Ey; +
s

4 42 (Em. Ly + ()1331) ot (F 31:11 2:1[‘:31)] RN

(2.13)
13 En 22 4r2
f"‘:ﬁE = B+ °[ (/Fm“—Fszo) gr X
. By B\
X (21340 - —106—.[‘22)] L"’ﬁ[ (71341 —3z (FuEm + F10F21))
+ 2r%(9q)- (aE : ’“H—NS’%)] S 2.14)

Thus, the displacement in the plane of the slit is given by formula (2.11). The terms in {2.13) and (2.14) con-
taining the factor B take account of the effect of the inhomogeneity of the medium.

Representing the initial phase of the vibrations w; in the form of the sum
0o = g -+ Oy,

where wyy=arctg [(f;/f)g=,], from (2.12) we obtain a formula for the approximate determination of the per-
turbation of the initial phase of the vibrations under the effect of the inhomogeneity of the medium with low-
frequency vibrations:

- faf10— faafi (2.15)
Oor == AT 7y T ! :

where f;; and £, are equal, respectively, to f; and £, for 8=0. From (2.15) it follows that, under the above
conditions, in a medium with the properties (1.1), the perturbation of the initial phase of the vibrations does
not exceed the angle r/4.

In [7] a formula was obtained for determining the transverse cross section of an obstacle, scattering
elastic waves in a solid medium. The transverse cross section S is defined by the ratio

S = W/T¥,

where W is the energy of the incident wave, per unit area of the obstacle, normal to the direction of propaga-
tion of the wave; W; is the energy of the scattered wave, per unit area of a sphere of large radius R, surround-
ing the obstacle, In the case of a longitudinal wave, propagating parallel to the Ox axis,

S = 4 ,_’2 Im g10). (2.16)
0

where g(0) is expressed in terins of the amplitude of the longitudinal scattered wave at a distant point of the
field. Our aim is to derive a formula for the transverse cross section of a circular slit in the inhomogeneous
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medium under consideration. For this purpose, we write the expression for the axial displacement (2.5) at
r =0 somewhat differently:

202 — k2 - ay

7 > . nizi
— §[_ 60—6‘.' __EM___J Al (a) ado. (2.17)

We rewrite the first term in the form
ez ~ —huiz|

= ; = = : ey The
31/3./»’1:—-713:’5‘41(/;]/‘ 31)e E 1:2(1L-+k36\41(\1\-1/‘;“)e IR

scutdu.
where v=1T—0% i =a) 3k u=1"7—1
As z—-%, we obtain an asymptotic representation for N;{k, z} {8]:
o[22

¥ 3]
——rr (2.18)

Ny = — 4, (0)

We transform the second term in (2.17) analogously:

1 S
Ne=—k| 4()VT=0) e "6 @) v (1 — vt dv + & | 41T +42) X
b 0
X e~hulzl G (1) u (1 + u?) du,

where
26 -a . — Lo f = Vl—v2$ i<,
B —Efar “T ST T et

Again using the results of [8], we find that, as z—~%, Ny=0. Then from (2.18) we find that g(0) =—(k%/3)A,(0),
and (2.16) is brought to the form

G(a)=

4J'tk

§=—*1m 4, (0).

Starting from (1.8), (1.9}, and (1.15), we obtain

1

‘ - 1

2q2 — k? —an <in e 2131 {egrey g

Al (0) ll_l’:% an [6]w7 u(oc2—1]6)] \ 6( sin ('L‘)d ka \ be(’:) d:
¢

Thus, we finally obtain
S = —8Re | £6(3)dx.
0

Substituting here the values of {(¢) from (1.23) and limiting ourselves to a few terms, we express the trans-
verse cross section as a function of the two parameters k and 8:

S=8 h - —( o+ BEyy — 2 Epy - ) 4 10-1,\11520 + 108E;, —
— (345,15,0 CA08RE,) <+ B2 (1TEseEqg — 541E ) — B (1TEp By +
S A8aE ) + P (17E, — 18aE,,) - ] -
.- i
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DEFORMATION OF A STOCHASTICALLY
INHOMOGENEOUS SOLID WITH AN OPENING

N. B. Romalis UDC 539.3.01

At the present time, there exist a very large number of solutions of the deformation of unbounded
stochastically inhomogeneous bodies. In these solutions effective moduli of elasticity are determined, i.e.,
the mechanical properties of the material, averaged over the spatial region, as a function of the parameters
characterizing the structural inhomogeneity of the medium. However, by virtue of the nonlocal character of
the connection between the mean stresses and the mean deformations [1], the effective moduli of elasticity
depend to a considerable degree on the boundary-value problem. It must be noted that, for the solution of
concrete boundary-value problems in the theory of elasticity, considerable mathematical difficulties arise.
At the present time, there exist solutions to a number of boundary-value problems of the stochastically
inhomogeneous theory of elasticity for a half-plane, a band [1], and an infinite plane with a circular opening
{2, 3]. In the case of antiplane deformation, a solution has been given to the problem of the propagation of a
crack in a stochastically inhomogeneous body (4, 5].

We consider the plane problem of the deformation of a body, whose elastic constants are random func-
tions of the coordinates. With the surface forces gj given at the contour L of the region 8, occupied by the
body, and in the absence of volumetric forces, the equations of the plane problem of the theory of the elasticity
of isotropic inhomogenecous bodies, written in terms of the stresses, have the form [1]

X, = 6, cos nx — 1,008 ny = g,

Un = Tyy COS X -= G, COS NY = g,

do ar a2 o 52 (l)
x_:__‘Ty_z 2 fas e ——___(l IR g ;.2..‘1
G oy 0, 2y (o, —ay)] 722 0% ey Ty Gyt v
It da
wo oy ol
) Gy 0

Here q and y are expressed in terms of the Young modulus E(x, y) and the Poisson coefficient v(x, y) by the
relationships ‘

y=LE, ¢ = (1l -+ vE, (2)
where V2 is a Laplace operator.

Let q(x, y) and y (x, y) be random functions of the coordinates. Then relationships (1) constitute a sto-
chastically nonlinear problem, determining the random functions Tij(x, y). We represent the values of q and
v in the form q={(g) +q', y= {y) + y'. We postulate that the random functions g{x, y) and v(x, y) are statisti-
cally homogeneous and are statistically homogeneously interconnected ({g) = const, {y) =const). If the solution
of the problem (2) is represented in the form of a series in powers of some parameter %, then the problem
(1) is normalized. The parameter % is introduced by the relationships [1].

g=1Cg> ~»q". vy [y L=y, 1;= SO W, (3)

Substituting (3) into (1), and equating expressions with identical powers of %, we obtain a boundary-value
problem for the zero approximation,

Voronezh. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 161-165,
May-June, 1978. Original article submitted May 25, 1977.
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